If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20w^2+16w-4=0
a = 20; b = 16; c = -4;
Δ = b2-4ac
Δ = 162-4·20·(-4)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24}{2*20}=\frac{-40}{40} =-1 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24}{2*20}=\frac{8}{40} =1/5 $
| X*1.04=x+100 | | 18-4h=14 | | 1.15*7=x | | 3(2r+5)=-21 | | 1+1x=41-3x | | 24=6(−x−3)24=6(−x−3) | | 0=-16t^2-72t+280 | | 10+s=15 | | 1-z=3(z-4)-4(z-3) | | 68=(2x) | | 66+(-2x)=-10x+82 | | 0=(4x-1)(x+6) | | x−48+3x+19=−89x−48+3x+19=−89 | | 5/3=9/3-2/6x | | |x/3-9|=5 | | d+77/21=6 | | 60.9=8.7+x | | t+1=72 | | 8x^2-32x+30=0 | | 6=2/5u | | 2x-4(x-2)=-7+3x-20 | | 0=3x^2+14x+8 | | 4/5=-1/5+2/5x | | 30(v+12)=540 | | -13=5(u-5)-8u | | s^2-2s-120=0 | | 0.50(x+2)=0.50(3x+4 | | -2(-8(6-3x)+4(2-3x))=1 | | 1/2x+1/3x=10/12 | | f+32=79 | | 13x=8x+4 | | -59^2+9p=-38 |